

March 1, 2006

Dave Peeler, Manager Water Quality Program
Washington Dept. of Ecology
P O. Box 47600
Olympia, WA 98504-7600

Re: Spokane River TMDL

Dear Dave,

Thank you for meeting with Commissioner Tom Agnew and myself last week. We appreciate you taking the time to listen to the District's concerns regarding the proposed TMDL for phosphorus in the Spokane River.

As you know, the District is about to complete the upgrade to its wastewater treatment plant which discharges to the Spokane River. The project when completed in May 2006 will improve phosphorus and ammonia removal, thereby improving the effluent to the river. The \$12 million dollar cost of the project is financed partially by Public Works Trust Fund loan of \$7 million and cash reserves of the District of \$5 million Needless to say, this is a large expense for a small community.

The District is proud of its long history of environmental stewardship including lake, river and aquifer protection activities. The District was one of the first to propose bans on phosphorus containing laundry detergent, phosphorus containing dishwasher detergent and phosphorus free fertilizers. Water conservation has been a long time public education program of the District realizing that the Spokane Rathdrum Prairie Aquifer is a limited resource of drinking water for the people of North Idaho and Spokane metropolitan area. I mention this, because the District is committed to being a partner with the other dischargers in the water quality improvements of the Spokane River.

Meeting the proposed Spokane River phosphorus standard could have a significant financial impact on the 2300 District customers that will pay for the treatment plant improvements at Liberty Lake. The District's ability to finance future construction is a concern, particularly for the immediate future. Installing "purple pipe" for water reuse is still another unknown cost. We have just spent \$12 million on the treatment plant upgrade. It is estimated that adding filtration to the Districts treatment plant could cost an additional \$6 million dollars. Liberty Lake Sewer and Water District will need financial help to meet these obligations and hopefully the Washington State Department of Ecology will assist. In addition, the District's NPDES permit is currently at 1 mgd,

Harley Halverson Secretary

Frank L Boyle Commissioner

Me Octobran

plant has been designed and constructed for 2 mgd. The District could reach the 1 mgd limit before the next phase of improvements is completed. The new NPDES permit will need to permit discharges to the river in excess of 1 mgd.

Enclosed are the written responses by the District's consulting engineers on the Department of Ecology's Water Quality Managed Implementation Plan Proposal as dated January 2006. Also included for your review are August 2005 and January 2006 Discharge Monitoring Reports for the District's wastewater treatment plant. Please note that in mid January 2006, the new addition to the treatment plant was placed on-line and resulted in immediate reduction of phosphorus in the effluent. We are encouraged by these preliminary results

Thank you again for meeting with us

Please contact me at (509) 922-9016 for additional information

Sincerely,

F Lee Mellish

Manager

Cc: Dennis Fuller Larry Esvelt

LLSWD Commissioners

enclosures

ESVELT ENVIRONMENTAL ENGINEERING

7605 EAST HODIN DRIVE, SPOKANE, WA 99212-1816

Phone: 509-926-3049 Fax: 509-922-3073

February 14, 2006

MEMO RE: Spokane River DO TMDL Draft Managed Implementation Plan

IO: Dennis Fuller PE, Century West Engineering Corp

Copy: Dr Lee Mellish, Manager, Liberty Lake Sewer & Water District

From: Larry A. Esvelt PhD PE

Water Quality Managed Implementation Plan Proposal¹

The Draft TMDL MIP contains numerous proposals for implementation to improve water quality in the Spokane River and Lake Spokane (Long Lake Dam Reservoir) They include:

- 1 A goal of P discharge from Liberty Lake Sewer and Water District of 0 03 #/D (p 2) This calculates as 0 0018 mg/l (1 8 μg/l) of P in an effluent of 2 0 MGD, the projected planning period wastewater flow This may be a typographical error, as no discussions to date have mentioned achievement of treatment to this low level
- 2 An Interim Limit of 50 µg/l of total P in the effluent is proposed for all dischargers (p 5)
- Reclamation and reuse is suggested as a tool for reducing P mass emission rate (MER) to the river (p. 5) Reuse in any current water supply vendor service area requires inclusion of the reuse alternative in the Comprehensive Water Plan, and facilities that reclaim water must not impair any water rights downstream
- 4 Reuse/infiltration recharge is suggested as a means for reducing P MER to the river (p 8) Presumably this refers to recharge of the Spokane-Rathdrum Aquifer The Aquifer management plan does not currently accommodate recharge of wastewater, regardless of pretreatment
- 5 A "Technology" schedule has been included, indicating completion of various components as follows:
 - a completion of pilot studies 6 months;
 - b completion of a Comprehensive Wastewater Management Plan 6 months;
 - c. completion of design for the improvements 12 months;
 - d completion of construction 24 months

Washington State Department of Ecology, Spokane River Water Quality Manage Implementation Plan Proposal, January 2006.

- A Permitting schedule is proposed It is difficult to ascertain how this will be administered from the presentation in the MIP, since time limits in the Technology schedule may be difficult to achieve (see below).
- 7 The issue of increased quantity and changed characteristics of biosolids was not addressed in the MIP.

Comments

The initial "goal" was presumably a typographical error Based on $10 \mu g/l$, as discussed in the text, the limit would have been 0.17 #/D Recent investigations have indicated that $10 \mu g/l$ is difficult to impossible to achieve on a consistent basis

A trip was made to observe Colorado WWTPs achieving low levels of P Data was obtained from the plants visited, which was summarized in a Technical Memorandum on Advanced P Removal in Colorado Area Wastewater Treatment Plants ² The plants had design capacities in a range of sizes, but all appropriate for consideration as being appropriate to the Liberty Lake Sewer and Water District treatment facility. The influent sewage was fairly typical in conventional pollutant concentration and in P concentration. Data from the visited plants was normalized logarithmically for analysis. A summary of performance at the plants attempting to remove P to low concentrations is as follows:

Plant Location & Name	Design	Current	Data	TP,	TP,	TP,
	Flow,	Flow,	Year	50%ile,	95%ile,	99%ile,
	MGD	MGD		mg/l	mg/l	mg/l
Breckenridge, Iowa Hill	1.5	1.0	2003	0.007	0.026	0.045
			2004	0.005	0/017	0.027
			2005	0.008	0.019	0.028
Breckenridge, Farmers Korner	3.0	10	2003	0.006	0.020	0.031
			2004	0.004	0.013	0.020
			2005	0.007	0.029	0.052
Frisco, Frisco WWTP	1.7	0.8	2004	0.049	0.093	0.120
			2005	0.069	0 124	0.158
Dillon, Snake River WWTP	2.6	0.7	2003	0.015	0.035	0 049
			2004	0.018	0.038	0.053
			2005	0.014	0.034	0.049
Parker, Pinery WWTP	2.0	0.65	2002	0.029	0.060	0.082
			2003	0.027	0.050	0.065
			2004	0.029	0.054	0.071

Only two of the exemplary treatment plants achieved 10 μ g/l P on a 50%ile frequency basis

² Technical Memorandum, Advanced P Removal – Colorado Area Wastewater Treatment Plants, Esvelt Environmental Engineering, February 2006 (in Draft Form)

Pilot plant studies have been conducted at the City of Spokane Riverside Park Water Reclamation Facility during the fall and early winter 2005-2006. Five different pilot treatment units were operated from 2 to 4 weeks each. Preliminary results showed none of the units to produce $10~\mu g/l$ P effluent on a 50% ile basis. The question was raised during the pilot studies regarding reproducible results, as data from the treatment plant laboratory and from Anatek, a commercial laboratory, were not always consistent, even though both used the same EPA approved procedures

- The exemplary Colorado plants visited produced an effluent P concentration of 50 μg/l on a more consistent basis;
 - a Four of the 5 plants produced an effluent P concentration of 50 μg/l or better on a 50% ile frequency
 - b Three of the 5 plants produced an effluent P concentration of 50 μg/l or better on a 90%ile basis (log normalized data)
 - c Four of the 5 plants produced an effluent P concentration of 100 μg/l or better on a 99%ile basis (log normalized data)

These results indicate that significant doses of coagulant (all used Alum) are required for low concentration effluent P Doses ranged from 85 mg/l (Frisco, with the lowest level of achievement) to nearly 200 mg/l (Iowa Hill and Farmers Korner, with the highest level of achievement)

The pilot plant units tested at RPWRF also had better results based on a 50 µg/l objective

- a Four of the 5 pilot treatment units tested achieved 50 μg/l at the 90%ile level (log normalized data)
- b Four of the 5 pilot treatment units tested achieved 100 μg/l on a 99%ile level (log normalized data)
- RCW 90 46 requires that proposed uses of reclaimed water intended to augment or replace potable water supplies or create the potential for the development of additional potable water supplies, must be incorporated into water supply plan or plans addressing potable water supply service by multiple water purveyors. The owner of a wastewater treatment facility that proposed to reclaim water shall be included as a participant in the development of such regional water supply plan or plans. This may not have been given adequate recognition in the MIP

RCW 90 46 also requires that Facilities that reclaim water shall not impair any existing water right downstream form any freshwater discharge points of such facilities unless compensation or mitigation for such impairment is agreed to by the holder of the affected water right. This may not have been given adequate recognition in the MIP

- The Spokane Rathdrum Aquifer Management Plan (208 Plan) adopted by Spokane County, Washington Department of Ecology, and other government entities, calls for no discharge of wastewater to groundwater in the "Aquifer Sensitive Area" ³
- Pilot plant studies were conducted over a period of 5 months at the Spokane RPWRF. This pilot testing began after Inland Empire Paper Co. had conducted pilot testing with essentially the same units over a previous period. Arrangement for the units and conduct of the testing took place over nearly a year period. This would indicate that a 6-month schedule for completion of pilot testing might not be feasible.

Completion of a Comprehensive Wastewater Management Plan in a 6-month period may also not be feasible, especially if water supply comprehensive plans and water rights mitigation issues must be completed before the environmental considerations of the wastewater plan can be completed

Completion of design of facilities in 12 months after the comprehensive wastewater plan is complete and approved may be feasible, if financing for the design is already in place Securing financing may delay this item

Completion of construction in 24 months after design is complete would appear to be feasible, if financing is already in place Delays in financing may delay the construction

- The permitting schedule will be adversely affected if the other potential timing problems discussed above cannot be overcome
- The production of biological sludge will increase only moderately due to the higher level of nutrient removal The significant addition of chemicals will add significantly to the quantity of sludge, and will change the character of the sludge significantly

For Example: Addition of 180 mg/l of Alum will result in about 50% of that quantity in dry solids production This nearly doubles the sludge production from a typical treatment plant. The resulting sludge will be about ½ chemical sludge and ½ biological sludge from a plant like the LLSWD facility. If the sludges are combined, it raises serious questions regarding the ability to beneficially apply on land, and may make composting not feasible due to the loss of energy available to create and maintain composting temperatures.

It does not appear that any consideration of this important factor was included in the discussion or considerations leading to the Department of Ecology proposed MIP

Spokane Aquifer Water Quality Management Plan, Final Report and Water Quality Management Framework Recommendations for Policies and Action to Preserve the Quality of the Spokane-Rathdrum Aquifer, Spokane County Washington '208' Program, April 1979

LEADING THROUGHEFFECTIVE SOLUTIONS

Department of Ecology
Maker Quality Program
MAR 062008

February 15, 2006

Liberty Lake Sewer and Water District 22510 E. Mission Liberty Lake, WA 99019

Attn: Lee Mellish, District Manager

RE: Proposed Spokane River Water Quality Managed Implementation Plan

Dear Lee:

Century West Engineering has reviewed the proposed Spokane River Water Quality Managed Implementation Plan published by WSDOE and dated January 2006. Based on our review of this plan as it relates to and implicates the Sewer and Water District, we offer the following comments:

Page 2

The Liberty Lake allocated phosphorous daily loading goal is 0.03 lbs/day. At 2 MGD this equates to an approximate concentration of 1.8 ug/l. The plan further states that permittees will work to achieve equivalent reductions of their assigned allocation during the first ten years. There is no discussion or indication if this is a seasonal or year-round target. There is no treatment technology that currently exists that would allow the District to meet the goal at your treatment plant. As discussed later in these comments, the District has limited capacity to implement reduction measures discussed as "tool box" methods.

Page 3

The loading graph included in the plan assumes dischargers will reduce phosphorous loading from their treatment plants to 50 ug/l by 2012. This appears to reduce the point source phosphorous loadings to approximately 15 pounds per day at 2035. It is questionable that current technologies can achieve this level of phosphorous removal on a consistent basis.

Page 5

WSDOE expects that technology selection will be accomplished after rigorous pilot testing. There appears to be some flexibility in establishing the actual Phosphorous concentration limit based on the outcome of pilot test results. This may be problematic in that treatment results can sometimes be temperature and seasonally dependant. Short-term pilot tests may not provide sufficient data to give confidences in long-term reliability and consistency.

1825 N. Hutchinson Rd , 2nd Floor Spokane, Washington 99212 phone: (509) 838-3810 fax: (509) 624-0355

Lee Mellish, District Manager Page 2 February 15, 2006

Page 6

WSDOE states that they will view technology selection decisions in light of a 20-year payback time, and that they would expect no wholesale scrapping of new technology unless it was financially reasonable to change technologies. The meaning and intent of these views is vague with little assurance that if technology advanced rapidly, providing opportunities to significantly improve phosphorous reduction that large capital investments would continue to satisfy permit requirements

Page 7

The plan discusses "Permittee's delta elimination Commitment" It is unclear what the commitment is. Liberty Lake Sewer and Water District has limited authority to regulate or control non-point sources and the reduction of those sources. It is unclear how the "commitment" will be determined and assigned to individual permittees. The Liberty Lake area has no known storm water discharges to the Spokane River. Other non-point sources of phosphorous to the river are not within the District's authority to regulate

Page 8

The plan states that there is no certainty that the Phosphorous-loading goal will be met. It is unclear how it will be determined when enough has been done.

Page 9

- 2.1 1 1 1 Six months is not sufficient time for pilot testing. It appears that the District may be allowed to utilize past and future pilot test results from other discharger. Some review and analysis will be required to determine if these test results can be relied upon for design and provide the District a reasonable level of confidence that they are representative of expected results for the District's plant. A more reasonable period of time for pilot testing is 12 to 18 months.
- 2.1.1.2 Six to twelve months is not sufficient time to prepare and obtain approval of a Facilities Plan. If the WSDOE would accept an amendment to the District's current plan that would focus on Phase II Improvements and Reclaimed/Reuse opportunities a one-year time period may be reasonable.
- 2.1 1.3.2 Twelve months for design may or may not be reasonable. This will largely depend on the selected technological solution. If Reclamation and/or reuse are part of the solution, the design/agreements and possible land acquisition may take significantly longer.

Lee Mellish, District Manager Page 3 February 15, 2006

211423

Twenty-four months for construction may not be sufficient for similar reasons stated for design

212111

The first NPDES permit issued to the District should be for 2MGD as provided for in the approved facilities plan

Page 10

2.1.2.1 1.5

Reasonable growth for the District is provided in the approved Facilities Plan and supports a 2MGD permitted treatment plant

2.1.2 2 1.1

Interim effluent limits for the District's first permit issued under the MIP should be the effluent quality parameters shown in the approved facilities plan for 2MGD with the treatment plant improvements currently under construction - Any other limits will potentially result in permit violations

2 1 2 4 1 2 8 1

LLSWD is not responsible for complying with Phase II storm water permitting. The City of Liberty Lake is the agency that must meet these requirements. The City should be a party to the final agreement.

212212

Adjustments to interim limits based on new technologies must consider funding and be cost effective.

21241283

LLSWD is not responsible for street sweeping. The District currently has a leaf pick up program that is very effective. The District is not responsible for road de-icers. They are also not responsible for but have been a watchdog of treating storm water within the portion of the District that is in the County. The City of Liberty Lake has assumed responsibility for storm water treatment within their corporate limits.

Pages 17 and 18

The Comprehensive Wastewater Resource (Reuse) Management Plan should be done concurrent with the Facilities Plan amendment to insure consistency Identification of real potential users could delay completion of these planning documents.

4.14

The Comprehensive Water System Plan is currently being updated Inclusion of reclaimed water and re-use in these updates could significantly delay completion of the plan.

LL/GEN/PROPOSED SPK RVR

Lee Mellish, District Manager Page 4 February 15, 2006

We trust that these comments will assist you in your response to WSDOE.

Sincerely,

CENTURY WEST ENGINEERING CORPORATION

Dennis D. Fuller, PE

Project Manager

Department of Ecology Water Quality Program

MAR 062008

Monthly	LIMIT O	AVO	1961	Wind	٤	2 6	3 5	3	28	27	26	25	24	23	13	21	20	19	ā		1 0	à ũ	'n	1 2	<u>ئ</u>	3	1 2	6	, C	-	T ₆	O1	4	()	N		Date	ried.		[Param.		Perm
1MGD	_	0.724	0.008	0 000	0000	0.070	0.570	2 71	0.714	0.714	0.693	0.675	0.676	0.676	0.638	0.638	0.638	0.833	0.811	0.82/	0.887	0.734	10.75	0 737	7 000	2000	0.710		T	T				<u> </u>	0.744	0.744	mgd	daily		Flow	÷	Permit #WA0045144 County: Spokane
1MGD		100	8,09	3 29	0.00	300	3	1		æ 33	8,17	8.09	8.09	8.14			8.24	8.39	8 14	8.38	8.30	3		0.2.0	9 0	0 0	8.38	8.19	ľ		-			8.18		Н		daily	 	£		045144
		253	W/80200	344								216							344				1	ľ	igg	3								_			mg/	weekiy		800		County
		231	TOTAL STREET	366	144			1	17	3	144	228	314				176	268	366	332				310	204	262	188				-			140		-		/ weekly		SST	NELU	County: Spokane
		6.15		6.58	6.58			1					6.24				-			7.22		-					6.14							4.57			ma/l	/ weekly		Phos.	ENT	
		10.9	A (24/09/20)	19	10.0	6.0			ic		5 6	70	80	19.0			12.0	19.0	7.0	15.0	3.5			11.0	8.0	15.0	8.0	14.0						120					 	Set		9
		4.9		7.4	7.4	5,4		<u> </u>	4.0		n d	4 0	n i	2			4.8	4.4	5.8	5,0	ω 1	-		4.3	5.2	4.8	5.4	. 4.0						41	1			daily				Certific
5 6	6.00	新城市	6.91	7.47	7.24	7.14			1.08	1.08	7.11	717	713	716			701	709	7,04	7.09	7.00		-	6.91	7.03	7.21	7,47	7.23	-	-}			-	712	+	9.4	- -	daily	9	2		Certification Grade-III,III,I,I Receiving Street
ි ර	6.0	1 ST	6.92	7.34	7	7.08	-		6,98	1.16	7.10	1,00	703	7 13		0,0,0	ŝ	7 27	7.1	7.04	7.03			1	ļ	-	7.17	-		+		+	+		-	3.5	-{	daily		2 74		Certification Grade-III, III, I, I
		7.0	280		7.4	7.4			7.2	6.9	2 2	1 2	7 0.0	a o	+	+	+	+	6.8	-1	7.7	-	-	H	├	Η.	7.5		-			-	- 4.0	3		Ę	╌┝	daily	- <u> </u>	_1		Groge
		11.2		12.6	10.8	10.7			10.9	10.4	10.9	201	5 6	100	-	-		1	113	1	11.7	-		11.6	11.3	11.5	12.5	11 2	1	1		†	12.0	;	-	-	-ţ-	1	dual	_		y Mixe o
45		1.9		2.4					- 	-	-1	+	-	-	+	+	\dagger	+	3		-	-		Н	2.4				-	+	\dagger	+	-	+	+	//gm	4	_ŀ				chmidt, N Rece
-		99.2		99.5	-						99,5		-		+	-	+	90	8		1			-	98.8			+	+	-	+	+	+	-	-	_⊩.		100/11	800		0	Receiving Stream: Spokage Biver
375	1	3		5	1		-				6	+	-	-	-	-		ī	+	-	-	1		-	16	-		+		+	+	+	-	-	-	% Kem lbs/day	WEEVIN				CO. 1. WOO	Bam: Sur
45		19		32 -	_		-		1.0	1.0	2.0	1.0	-	+	1	2.0	2.0	1.0	3 6	2		-		3.0	2.0	1.0	2.0	-	-		-	+	4.0			ay mg/	12	+			A CAN	V-2-2-2-10-1
	50.6	- GG 7	1	22.0	8	-	-	_	_	_	99.1	╄	ļ.,	-		+-	╀	+	200.4	- -	+	+	4	99.0	4	-1			-	-		t	97.1	╀	-	Ħ			TSS	EFF	,	Ì
375	╁	3	198	g u	+	+	+		<u>о</u>	_	H	6	ļ	-	-	11	14	╁	\dagger	+	+		1	18	+	o, i	+	+	-	+	+	-	0	H	-	in bs/d	(IV Wee		(,)	FFLUENT		_
	פאס		22.2	╁	-	1	1			_		-			-	_		 	+	-			-		-	-		+	-	-	-	-	-	-	-	ay ug/	(IV guart		Zinc			dischar
	באינות ביי		ר בי	╆	+	-	+		1	_		_			-	-	_ 	-	-	+		+	+	1	-	1	-	+		-	-			_	-	L ug/	erlyquan	-	c Cadmiu		MONTH	ge Mon
		98	7 152	╢	+	+	+	-	+	-				-	-	-		-		+	-	-	-	-	1	+	-	-	-	ļ		-		-		L ug/	eriy quar.	1	miu Lead		Ī	Discharge Monitoring Report
+400/100	6:	100	79	H	-	-	-	+	-	-	<u>.</u>		_ _				-	- 	-	œ			+	-	+	_ _		-		-	-	-	79	_		% Rem ibs/day ug/L ug/L ug/L #100ml mg/L	eriy wee	Coli.	٠		٦Ļ	Report
8	3.22		L	0.20	-	-	-	-	-		4	0.27							1.56	-	-		-			4.00	+	-	-				9.43			m) mg,	kly wee		al Phos.		JANUARY	!
	2 129	2	3 129	-	<u> </u> _	-	+	-	+		-	7					-		o		+	-	1			jö	-		-			_	129	_	_	/L mg/L	kly mon	-	os. Total			
	9 186	1	9 186			-		1	+	-	+	-							-	\vdash	-	-		-	1	1	+	-	<u> </u>	_	_	-	9 186			J/L mg/L	monthly monthly monthly	Hardnes Alkalini			¥	
	6 2.30			4.05	-			-	-			<u>ک</u>	-						<u>^</u> .05			-	-	+	+		-	-	-			-	36 9.2	_		g/L mg/L	ithly mor	alini	Total Ammon	- 1	YEAR 20	
	ŏ		2	জ]		5]			တ							<u> </u>		<u>_</u> _	<u> </u>		l		2			Υ.	<u> </u>		mon		2006	

epartment of Ecolo later Quality Progra	gy Mega Maga		0		Ш					1		٠,	"	2 23	"	ω.		T		i		Ì		ı	ļi	Í	1		1		Date	Freq.	Param.	1	ı=
MAR 062008	M [§]	H	0.720	0.608	0.740	0./81	0.781	0.724	0.724	0.748	0.705	0.718	0.648	0.648	0.648	0.704	0./16	0.771	0.657	0.657	0.657	0.745	0.655	0.716	0.717	0.717	0.7/4	0.//1	0.722	0.805	mgd	daily	Flow		Permit #WA0045144
00 (110	8			7 36	8.2/	831	8,13		8.16	7.92	8.01	7 89	7 70		7.98	7.37	7,36	7.85			8.07	7 8 05	7.96	8,12		α, 20	8.20	68.7	8.12	8.20	s.u.	daily	Ę)45144
	ICERT	-	277	4107044				-			303		1	-		200						324						231			mg/	weekiv	BOD		County
	OR OR THE TWO WAS DESCRIBED AND TWO TANKS SHOWN AS THE TOP TO THE TRANSPORT AS THE TOP TO THE TO	,	309	220	452	558		+	304	346	298	a a a a		-	224	326	300				290	290	204		-	154	256	206	282		mg/l		TSS	INFLUENT	Spokar
	ALTY OF LAW, T	.,00	7 06	- 156 - 156		8,41		+	-		0.20	۵ ک	-			-	7.62				-	-	7.45					-	8.06		ma/L) AGGW	Phos.	ENT	ñĎ
	HAT TIBS DOOR	-	S 2	16.0	2.0	16.0	5.0	-	2	1.0	4.0	╁	-		7.0	4.0	+	-			S ()	9.0		. 9.0		10.0	16.0	7.5	3.0	╗	mi/	1			
	MENT AND A	_	100	12 A	3.1		\vdash		+	H	2.4	+	\perp	H	+	220	-	-		+	1 2 5	╁	\vdash	-	-	0.6	┝	H	3.2	╌╟	+	╅	i. D.O.		Certi
	9.0		7.13	Š.	7.13	إ_ا	4		\perp	4	7.33	-	-	\sqcup	4	7.39	\vdash		Н	‡	7 41	╀	\vdash	-		-	╀	ļ.	7.25		+	╆). pH am	_	Certification Grade-III.III.I
	9.0	-	38 G	+-	3 7.13	\vdash		+	-	-	7 19	-	\vdash	$\left - \right $	+	7.33	\vdash	Н		+	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\vdash	Н	+		25 7.19		-	5 7.04	╬	+	+	am pH pm		1246-11
	b. 0 10 9,0 30		2	┿	H	H	-	-	-		- -	╁	\vdash	-	+	+	╁╌	\dashv	$\frac{1}{1}$	+	+	-				-	-	Н	-	-}	+	+	pm D.O.		Ξ
		╀	1.10	\vdash	Н	-	+		$\left \cdot \right $	+	2 0	-	H	-		3 2		\dashv		- -	3 1 2	H	\vdash	\dashv	-	H			2.3 2	-	+	-			
777		0.12		-	20.7	0.6	1.2		0.9	+	70.5	36			4	21.3	H	0.8		ic	21.4		1. S	<u>-</u>	+	1.0	21.0	\vdash	4.	╁	Daily We		Temp		ŭ
o Alle Control	3 ts	0.3		15.7			-	-		+	4					15.7	Н					8.9			-		\dashv	10.1			- 14	-		TRECEIVED CREEKING COOKERS IN	Shina
# # # # # # # # # # # # # # # # # # #	90	95	3			-		-			070					93.7						97.3			-			95.6	-	1012	Weekly v	-	BOD	Or equit.	Chryston.
WILLIA DE PRESIDENTE	375 250	42		99.8			_			5	30					100						55						65		Davidy			_	CONGRE	017610
O ASSUKE THA	45 30	20.1		27.0	17	24			25	140	27			ŀ	3	24	14			=		15	17	_		2	3	25	6	-	weekly	-		ď	
r QUALITEED re.	90	93.5			96	96			92	98	92			ć	o g	92	95			S	3	95	92			65	95	88	94	/0 3 VGI I	weekly weekly		TSS	FFI UE	
BSONN-RU, FROM	375 250	121		166	105	156			151	87	162			ç	A 4	153	84			60		92	93			323	84	61	96	iva/uay	weekly			Z	
1990分の大阪3	,																													1,60	quarter		Zinc		
ASSARA THAY QU'ALTHIO PERSANSEL, FRANCELLY GARBERD, AND EVALLACED THE RYCGEMATION SUBMITTED, BASED																														1,60	quarterly quarterly weekly		Cadmii	MONIT	
TED THE RIFCRE					+		-			- -			-							l										1/50	yguarter		Cadmiul Lead	in	,
EMATION SUBME	+400/100 +200/100	7.4		65	41	0	5			360		15		+	\dagger	66	0	20	\dagger			71		7,				30	100	#1001	y week	Coli.		7	<u>^</u>
TTED. DASED	88	3.53				2 2	-			1	5.81			1	-			-	-	-			2 89	+				9	3 65	11 119/1	week	-	Phos.	ACCOS) - -
		129			+	+	+		-	-			-	+	-		+	+	+	-			1	-	-			+	120	· mg/r	weekly monthly monthly monthly	Hardı	i. Total		
		9 177			-	-			+	-			+	+	-		-	+	+				+	-	-		+	+	177	E I mg	hly mon	Hardnes Alkalinit	al Totai	Ĭ	í
		7 9.13		+	٥.٥	١	-		+	-	$\left \cdot \right $	+	+	-			2	+	-	-		+	-	+		_	_	+	2 2 2 2	/L	thly mo	linii	ai Ammon	YEAR 2003	3